翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Poincare conjecture : ウィキペディア英語版
Poincaré conjecture

In mathematics, the Poincaré conjecture ( ; )〔.〕 is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. The conjecture states: An equivalent form of the conjecture involves a coarser form of equivalence than homeomorphism called homotopy equivalence: if a 3-manifold is ''homotopy equivalent'' to the 3-sphere, then it is necessarily ''homeomorphic'' to it.
Originally conjectured by Henri Poincaré, the theorem concerns a space that locally looks like ordinary three-dimensional space but is connected, finite in size, and lacks any boundary (a closed 3-manifold). The Poincaré conjecture claims that if such a space has the additional property that each loop in the space can be continuously tightened to a point, then it is necessarily a three-dimensional sphere. The analogous conjectures for all higher dimensions had already been proven.
After nearly a century of effort by mathematicians, Grigori Perelman presented a proof of the conjecture in three papers made available in 2002 and 2003 on arXiv. The proof built upon the program of Richard Hamilton to use the Ricci flow to attempt to solve the problem. Hamilton later introduced a modification of the standard Ricci flow, called ''Ricci flow with surgery'' to systematically excise singular regions as they develop, in a controlled way, but was unable to prove this method "converged" in three dimensions. Perelman completed this portion of the proof. Several teams of mathematicians verified that Perelman's proof was correct.
The Poincaré conjecture, before being proven, was one of the most important open questions in topology. In 2000, it was named one of the seven Millennium Prize Problems, for which the Clay Mathematics Institute offered a $1,000,000 prize for the first correct solution. Perelman's work survived review and was confirmed in 2006, leading to his being offered a Fields Medal, which he declined. Perelman was awarded the Millennium Prize on March 18, 2010. On July 1, 2010, he turned down the prize saying that he believed his contribution in proving the Poincaré conjecture was no greater than Hamilton's (who first suggested using the Ricci flow for the solution).〔(''Последнее "нет" доктора Перельмана'' ), Interfax 1 July 2010〕 As of 2015, the Poincaré conjecture is the only solved Millennium problem.
On December 22, 2006, the journal ''Science'' honored Perelman's proof of the Poincaré conjecture as the scientific "Breakthrough of the Year", the first time this honor was bestowed in the area of mathematics.
==History==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Poincaré conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.